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1 Introduction 

It is well known that any function in the domain of a 
self-adjoint differential operator can be expanded in 
a uniformly convergent series in the eigenfunctions 
of this operator [1, p.90]. For functions that do not 
belong to the domain of self-adjoing Sturm-
Liouville operator, the problems of absolute and 
uniform convergence have been studied in [2-5]. In 
[2,3] the Sturm-Liouville operator Lu= - ¢¢u +q(x)u, 

 0,1x G  , with two point self-adjoint 
boundary conditions (the coefficients in the 
boundary conditions are real) was considered, and 
under the condition   , the absolute and uniform 
convergence on the interval G of the expansions of 
functions    1

pf x W G , 1< p£ 2 , 

f 0( ) = f 1( ) = 0 , in orthonormal eigenfunctions 
of this operator was proved. The operator L with a 
real potential    1q x L G  independent of the 
specific boundary conditions (in particular, self-
adjoint boundary conditions with complex 
coefficients are also allowed) was considered in 
[4,5]. The results obtained in [2-5] (for the case of 
the Sturm-Liouville operator) were generalized in 
[6] (for the one-dimensional Schrödinger operator). 

  In the present paper, we study the problems of 
absolute and uniform convergence of expansions of 
functions of the class W1

1 G( )  in the eigenfunctions 
of a third-order differential operator [7]. Sufficient 
conditions for the absolute and uniform convergence 
of these expansions are obtained, and the rate of 

uniform convergence is estimated. This study are 
based on Ilinꞌs spectral method [8]. 

On the interval G = 0,1( ) , consider the differential 
operator        3 1

2 3uL u P x u P x u     

with coefficients    1 , 2,3lP x L G l   

By D G( )we denote the class of functions 
absolutely continuous together with their derivatives 
of order £ 2on the interval G = 0,1[ ] . 

An eigenfunction of operator L  corresponding to an 
eigenvalue l  is understood as a function 
   u x D G that I s not identically zero and 

satisfies the equation Lu +lu = 0almost 
everywhere in G [8]. 

Let uk x( ){ }
k=1

¥  be a complete orthonormal system 

in L2 G( ) consisting of eigenfunctions of the 

operator L , and let lk{ }
k=1

¥
 be the corresponding 

system of eigenvalues, Relk = 0. By 

Wp

1 G( ), p³1 , we denote the class of functions 

f x( )  absolutely continuous on the interval G  for 

which    pf x L G  . We write mk -ilk( )
1

3 , 

Imlk ³ 0;mk = ilk( )
1

3 , if Imlk < 0, and 
introduce a partial sum of the spectral expansion of 
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the function f x( ) Î W1
1 G( )with respect to the 

system  

      
1

1
: , , 0

k
k k kk

u x x f f u x  
 




  , 

where      
1

0

,k k kf f u f x u x dx   . Study the 

behavior of the difference Rn x, f( ) = f x( ) -dn x, f( ). 

In this paper , we prove the following results. 

Theorem. Assume that a function    1
1f x W G  

and a system uk x( ){ }
k=1

¥
 satisfy the conditions 

f x( )u
k

2( ) x( )
0

1
£ C f( )mk

a uk ¥
, 0 £a < 2,mk ³1    (1) 

and                                               

 1 1
1

2
,

k

k w f k


 



   .                  (2) 

Then the spectral expansion of the function f x( )  

with respect to the system uk x( ){ }
k=1

¥
 converges 

absolutely and uniformly on the interval G = 0,1[ ] , 
and the estimate  

 
 

     
 

 

0,1

2 1 1 1
1 1

3
1 2

1 1 1
2

                            ,

, ,

C

k

l

l

l

R f

const C f k w f k w f

f f f p







 

 


   



 




 


    



 
     

 





(3) 

holds, wheren ³n0 = 8p , W ×,d( ) is the modulus of 

continuity on the space  
 1 ,

pp L G
L G     , and 

the constant is independent of the function f x( ) . 

Corollarys 1. If the function f x( ) Î W1
1 G( )  in 

theorem satisfies the conditions  f 0( ) = f 1( ) = 0 , 
then condition (1) is necessarily satisfied (with the 
constant C f( ) = 0), its spectral expansion with 

respect to the system uk x( ){ }
k=1

¥
 convergence 

absolutely and uniformly on the interval  G = 0,1[ ] , 
and the following estimate holds:  

 
 

   
 

1 1 1
1 10,1

3
1 2

1 1
2

, { , ,

               1 }

C
k

l

l

l

R f cons tw f k w f k

f p






 


  



 



  

 
  
 





 

Corollarys 2. If the function f x( ) Î W1
1 G( ) in 

Theorem satisfies the relations f 0( ) = f 1( ) = 0  

and    1f x H G  , 0 < b £1 ( H1
b G( ) is the 

Nikolski class), then conditions (1) and (2) are 
necessarily satisfied, its spectral expansion converge 
absolutely and uniformly on the interval G = 0,1[ ] , 
and the following estimate holds:  

 
  10,1

, , oC
R f const f



        

where ¢f
1

b
= ¢f

1
+sup

d>0
d-bw1 ¢f ,d( )  and the 

constant is independent of the function f x( ) . 

Corollarys 3. If the function f x( ) Î W1
1 G( )  in 

Theorem satisfies the relations f 0( ) = f 1( ) = 0  and 

    1 1
1 , lnw f O


 

     as d®+0 forg > 0  

then conditions (1) and (2) are necessarily satisfied, 
its spectral expansion converges absolutely and 
uniformly on G = 0,1[ ] , and the following estimate 

holds:  Rn ×, f( )
C 0,1[ ]

= O ln-g n( ) as n ®+¥. 

 
2 Some auxiliary lemmas 
To prove the Theorem, we first prove several 
assertions. The following lemma was proved in    
[9,Th.3 ].  
Lemma 1. The following estimates hold for the 
system uk x( ){ }

k=1

¥  and the sequence mk{ }
k=1

¥  for 

any t ³ 0 : 

 
2

0 1
1 1

k k

ku const and const
    




    

    .   

(4) 
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Lemma2. (see [7]) The following estimate hold for 
the system uk x( ){ }

k=1

¥  for any m ³ 2 : 

 
2(1 )

1 , 0
k

k ku C

 

   




  ,          (5) 

where C1 q( )  is a positive constant. 

Lemma 3. Assume that a function f x( ) Î W1
1 G( )  

satisfies condition (2). Then the estimate 

 

   

21 1
1

1 1 1
2 1 1

[ ]

         ,

, ,

k

k k k

k p

w f u

C w f k w f

 

 

 

 





  



 

 
   

 




             

(6) 
holds, where r ³ 8p and C2 is a positive constant 
independent of r  and the function f x( ) . 
Proof . Take a positive integer m. By the estimates 
(4), using the Abel transformation , we obtain the 
chain of inequalities  

 
 

 
 

21 1
1

21 1
1

[ ] 1

,

,

k

k

k k k

m

p m

k

n p n n

w f u

n w f n u

  



  


  



 


   

 

 
  

 



 
 

 

 

 

    

1
2 1 1

1
1 1

1 1
1

,

       1 , 1

k

p m

k

n p n

u n w f n

n w f n



 

 


   

 

 
  

 

   

 
 

 

      

 

    

1 12

11 1

1 12
1

1

,

          ,

k

k

k

m

k

u m w f m

u w f

 

 

 

 

 


   

 


 

 
    

 

 
   

 





 

         
 

  1
1 11 1

1 11 , 1 , 1
m

n

const n n w f n n w f n




 
  



      

 
         

     

 
 

 

      

1 1
1

1 1
1

1
111 1

1 1 1

 ,

                          ,

, , ,
m

n

const m m w f m

const w f

const n w f n w f w f m




  

  

 

 

 

 
 



    

 


      




 

      

 
 

 

      

1 1
1 1

1
111 1

1 1 1

            , ,

, , , .
m

n

const w f m const w f

const n w f n w f w f m




 

 

 

 
 



    


     




 
sense the number m is arbitrary, this together with 
inequality (2), implies the estimate (6).  
Lemma 4. The following estimates hold for the 
Fourier coefficients fk

of a function 

   1
1f x W G satisfying condition (1): mk ³n0( )  

   

 

3 1 1
1

3
2 2

1 1 1
2

  { ,

} .

k k k k

l

k k l k

l

f const C f w f

f f f P u

  

 

  

 

 


  


   




  

(7) 
The Lemma 4 was proved un [10,see Lemma 2], in 
the case uk ¥

£ const , k =1,2,... In general case 
this lemma is proved with similarly way. 
 
3 Proof of the results  
Prof of theorem. Under the assumptions of theorem, 
we prove the uniform convergence of the series 

 
1

k k

k

f u x




 on the interval G . To this end, we 

represent this series as  

     
0 01 0 k k

k k k k k k

k

f u x f u x f u x
   



   

     

(8) 
To estimate the first sum on the right-hands side in 
(8), we apply the first estimate in (4), 

 
0 0 0

2

1 1
0 k k

k k kf u x const f u const f
    


 

  

 
To estimate the second sum in (8), we use Lemma  
4 and the estimates (5) and (6), 
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   

 

 

      
 

0 0

0 0

0

0

23

2 21 1 2
1 1

3
22

1
2

12 1 1
0 1 1 0

         

       ,

              

, ,

        

k k

k k

k

k k k k

k k k k k

k k

l

n

f u x const C f u

w f u f u

f f u

const C f n w f n w f



   

   

 







  



 




 

  

 
 



 
 

  



 

   

 
   

 


    



 

 

 



     
3

1 1
0 01 1 1

2
 l

l

l

f f f P 
 





     




 
Thus, the series (8) converges uniformly on the 
interval G . Therefore, the expansion 

 
1

k k

k

f u x




 converges absolutely and uniformly on 

this interval. By the completeness of the system 
uk x( ){ }

k=1

¥ in  L2 G( )  and the absolute continuity 

of the function f x( ) , we have the 

identity    
1

k k

k

f x f u x




 , x Î G  

To prove the estimate (3), we use Lemmas 2, 3 and 
4. 

 
 

 
 

   
 

 
 

   

 

0,1 0,1

1 0,1

0,1

3 1 1 2
1 1

3
2 2

1 1
2

             , ,

                 

                 

{ ,

            }

k

k k

k

C C

k k k k

k
C

k k k k

C

k k k k

l

k l k

l

R f f f

f u f u

f u f u

const C f w f f

f f P u

 

 

   



 



   

 



 

 

   



 




    

   

  

    

 

 

 





     
 

 

2

2 1 1 1
1 1

3
1 2

1 1 1
2

, ,

             .

k

k

l

l

l

const C f k w f k w f

f f f p





 

 




   



 







    



 
     

 





 
The proof of theorem is complete. 
Corollary 2 follows from the definition of norm on 
the space H1

b G( )and Theorem with regard to the 

inequality f
¥

£ ¢f
1
, which holds for any 

function f x( ) Î W1
1 G( )  satisfying the relations 

f 0( ) = f 1( ) = 0  indeed , if f 0( ) = f 1( ) = 0  and 

f x( ) Î H1
b G( ) , then we have C f( ) = 0 , and the 

following chain of inequalities is satisfied n ³n0( ) : 

     
 

    

 

 

    

2 1 1 1 1
1 1

3
2

11 1 1
02

3
1 1 1

1 1
2

11 1
0

   , ,

sup ,

     2

sup , .

k

l

l

l

l l
k l

C f k w f k w f

f f f p w f

k f f P

const f w f const f









 



  



  

  

  

   


    



 





    

 

 



    

 
      

 

 
      

 

    





 

 
To prove corollary 3, it suffices to note that in this 
case 

 
 

   

 
 

1 1
1

11
1

                  ,

ln ln , 0

k

k

k w f k

C f k k O



 



 


 




  



 

  




. 
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